
FUN3D: Fully Unstructured 
Navier-Stokes 3-D flow solver 
NASTRAN: Structural solver 
DDT: Discrete Data Transfer 

• PCE is a surrogate modeling technique based on a spectral representation 
of the uncertainty. A random function is decomposed into separable 
deterministic and stochastic components. 
 
 
 

• For a PCE of order p comprised of n uncertain parameters, Nt deterministic 
model evaluations are required. 
 

• An approach to improve efficiency is to seek an approximate solution to 
the underdetermined linear system  via L1-minimization, commonly 
referred to as Basis Pursuit Denoising, to obtain the PCE coefficients. 
 
 

 
• Convergence of the coefficients can be measured with increasing sample 

size for improved efficiency. 

Fluid-Structure Interaction Uncertainty over a Deformable 
Hypersonic Inflatable Aerodynamic Decelerator 

MOTIVATION 
• Accurate uncertainty quantification (UQ) is important for the design of 

reliable and robust planetary entry vehicles.  

• UQ can help improve the accuracy of physical models. 

• Previous work by the authors performed UQ of the flowfield over a rigid 
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) in preparation for 
the fluid-structure UQ presented here. 

OBJECTIVES 
• Apply an efficient and accurate UQ approach to the analysis of high-fidelity 

fluid-structure interaction (FSI) modeling over a deformable HIAD 

• Quantify the uncertainty in the HIAD deflection, aerodynamic heating, wall 
pressure, and shear stress 

• Identify significant uncertain parameters that contribute to the output 
uncertainty 
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HIAD ANALYSIS AND DESIGN 

BASELINE REFERENCE CASE  

 

 

 

HIAD SURFACE RESPONSE UNCERTAINTY CONCLUSIONS 
• An efficient uncertainty quantification approach was applied to the analysis of fluid-

structure interaction over a deformable HIAD aeroshell geometry 
• Approximately half of the 16 uncertain flowfield and structural modeling parameters 

contribute to the uncertainty in the deflection, aerodynamic heating, wall shear stress, 
and wall pressure 

− Deflection: tensile stiffnesses of cords, straps, and torus structure; inflation 
pressure 

− HIAD surface conditions: freestream density, shape deformation (deflection), and 
CO2-CO2 binary collision interaction 

• Future work includes coupled fluid-TPS response analyses of HIADs for Mars entry, which 
utilizes the results obtained from flowfield uncertainty analysis  
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Abstract #17 

Hypersonic flow modeling 
Year 2014 Structural modeling (NASA) 

Fluid-structure interaction 
Year 2015 (current study) 

Flexible TPS modeling  
(AIAA 2001-2510) 

Material Thermal Response 
Year 2016 (future work) 

FLUID-STRUCTURE INTERACTION 

CFD grid 

FEA grid 
FUN3D NASTRAN 

Loosely-coupled iterative process 

• FSI modeling subject to uncertainties 
- Operating (freestream) conditions 
- Flowfield parameters 
- Structural modeling parameters 

• High-fidelity FSI modeling can be computationally 
expensive 
- Monte Carlo infeasible 
- Need an efficient but accurate UQ approach 

HIAD DEFLECTION UNCERTAINTY 
Baseline Entry State 
Vi = 5,800 m/s 
hi = 104 km 
γFPA,i = -15o 

β = 61 kg/m2   

• Consider ballistic entry to Mars with 
a HIAD entry architecture 

• Consider peak heating trajectory 
location for UQ 

• Consider a 10m deformable HIAD, 
scaled from 6m NFAC test article 

6m test article at National Full-Scale 
Aerodynamics Complex (NFAC)  

Wall Pressure 

Wall Skin Friction 

Surface 
Flowfield 
Convergence 

HIAD 
Deflection 
Convergence 

Deflection and 
surface flowfield 
converged at the 
end of two FSI 
cycles 

Deflection angle: 
2.47 deg. 

DDT 

DDT 

Peak Heating 
V∞ = 4,973 m/s 
ρ∞ = 2.12e-4 kg/m3 
T∞ = 160 K 

Uncertain 
Parameter

T1 T2 T3 T4 T5 T6 T7 T8

E C 23.6% 32.9% 66.6% 73.9% 82.5% 85.1% 86.7% 87.2%
E T 20.2% 16.8% 8.3% 5.9% 2.6% 2.4% 1.3% 1.1%
P 0 14.0% 11.9% 2.5% 1.6% 1.1% 1.0%
E L 11.8% 8.6% 2.3% 1.8%
υLT 11.8% 11.1% 7.0% 5.3% 3.3% 2.3% 1.6% 1.4%
E 4K 9.3% 7.9% 5.0% 4.2% 4.3% 4.0% 4.3% 4.6%
ρ inf 3.4% 2.7% 1.0%
υ4K 3.3% 2.4% 2.1% 2.0% 1.4% 1.1% 1.0% 1.0%

 
 
 
 
 

95% Confidence Interval 
for Deflected Angle: 
[2.08, 3.44] deg. 

Contributions to Deflection Uncertainty at Selected Locations  
(T1-T8 denote torus in order from rigid nose cap to shoulder) 

Recovery of PCE coefficients at 
60 samples with approximately 
0.01-0.02 errors for each torus 
deflection location (T1-T8) 

• 90% contribution to the deflection 
uncertainty outlined in red 

• Main contributors to the deflection 
uncertainty are the tensile stiffnesses 
(E): 
− Technora cords 
− Torus 
− 4-K radial straps 

• Torus, 4-K straps, and inflation 
pressure (P0) become more important 
towards T1 

Uncertain 
Parameter

Flank 1 (T1) Flank 2 (T5) Flank 3 (T7) Flank 4 (T9) Shoulder (T12)

ρinf 87.7% 87.9% 87.6% 88.0% 7.1%
δ 10.7% 10.8% 10.8% 10.6% 92.9%
Vinf 1.6% 1.3% 1.6% 1.4% 0.2%

Uncertain 
Parameter

Flank 1 (T1) Flank 2 (T5) Shoulder (T12)

ρinf 62.4% 61.9% 61.6%
CO2-CO2 34.3% 33.9% 36.1%
δ 2.4% 2.6% 1.2%
Vinf 0.9% 1.6% 1.1%

Uncertain 
Parameter

Flank 1 (T1) Flank 2 (T5) Shoulder (T12)

ρinf 92.7% 93.6% 91.4%
δ 4.5% 4.7% 4.9%
CO2-CO2 1.6% 1.1% 2.4%
Vinf 1.1% 0.6% 1.3%

Contributions to Wall Pressure Uncertainty 

Contributions to Wall Shear Stress Uncertainty 

Contributions to Wall Heat Flux Uncertainty 

• Freestream density is the main contributor to wall heat flux, 
shear, and pressure uncertainties 

• CO2-CO2 collision interaction important in the wall heat flux and 
shear uncertainties – affects transport properties 

• HIAD deformation is particularly significant in the wall pressure 
uncertainty – due to structural uncertainties 

(NASA) 

Parameter Description Classification Uncertainty Ref.

V inf Freestream Velocity (m/s) Normal 0.5% CoV
ρ inf Freestream Density (m/s) Uniform ±30%
A CO2-CO2 Binary Collision Integral Epistemic ±30%

P 0 Inflation Pressure Normal 2% CoV

E C Technora Cords Epistemic [-50%, +20%]
E 3K 3-K Kevlar Straps Epistemic ±20%
E 4K 4-K Kevlar Straps Epistemic ±20%
E L Torus Orthotropic Laminate (Longitudinal) Epistemic ±25%
E T Torus Orthotropic Laminate (Transverse) Epistemic ±20%

υc Technora Cords Epistemic ±20%
υ3K 3-K Kevlar Straps Epistemic ±20%
υ4K 4-K Kevlar Straps Epistemic ±20%
υLT Torus Orthotropic Laminate (uniaxial) Epistemic ±15%

G LT Torus Orthotropic Laminate (In-plane) Epistemic ±25%
G LN Torus Orthotropic Laminate (Transverse) Epistemic ±25%
G TN Torus Orthotropic Laminate (Transverse) Epistemic ±25%
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Structures 
test data 
archive

NSTRF Y1 Wall Pressure/Shear Stress Contributions

Structural Boundary Condition

Elastic Modulus (Tensile Stiffness)

Poisson Ratio

Shear Modulus (Torsional Stiffness)

Material Thermal Response 
Year 2016 (future work) 
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