

Fluid-Structure Interaction Uncertainty over a Deformable Hypersonic Inflatable Aerodynamic Decelerator Dr. Serhat Hosder+ Andrew J. Brune^{*} Karl T. Edquist[#] *Aerospace Simulations Laboratory, Department of Mechanical and Aerospace Engineering, <u>ajby96@mst.edu</u> *Aerospace Simulations Laboratory, Department of Mechanical and Aerospace Engineering, <u>hosders@mst.edu</u> #NASA Langley Research Center, Atmospheric Flight and Entry Systems Branch, <u>karl.t.edquist@nasa.gov</u> HIAD ANALYSIS AND DESIGN **FLUID-STRUCTURE INTERACTION** 6m test article at National Full-Scale FUN3D: Fully Unstructured FSI modeling subject to uncertainties Navier-Stokes 3-D flow solver Aerodynamics Complex (NFAC) **Operating (freestream) conditions NASTRAN: Structural solver** Flowfield parameters DDT **DDT:** Discrete Data Transfer Structural modeling parameters

2 ¦ 3

Abstract #17

MOTIVATION

- Accurate uncertainty quantification (UQ) is important for the design of reliable and robust planetary entry vehicles.
- UQ can help improve the accuracy of physical models.
- Previous work by the authors performed UQ of the flowfield over a rigid Hypersonic Inflatable Aerodynamic Decelerator (HIAD) in preparation for the fluid-structure UQ presented here.

OBJECTIVES

- Apply an efficient and accurate UQ approach to the analysis of high-fidelity fluid-structure interaction (FSI) modeling over a deformable HIAD
- Quantify the uncertainty in the HIAD deflection, aerodynamic heating, wall pressure, and shear stress
- Identify significant uncertain parameters that contribute to the output uncertainty

POLYNOMIAL CHAOS EXPANSIONS (PCE) WITH SPARSE APPROXIMATION

 PCE is a surrogate modeling technique based on a <u>spectral representation</u> of the uncertainty. A random function is decomposed into separable deterministic and stochastic components.

$$\alpha^*(\vec{x}, \vec{\xi}) = \sum_{i=0}^P \alpha_i(\vec{x}) \Psi_i(\vec{\xi}) \qquad N_i = P + 1 = \frac{(n+p)!}{n!p!}$$

- For a PCE of order *p* comprised of *n* uncertain parameters, *N*, deterministic model evaluations are required.
- An approach to improve efficiency is to seek an approximate solution to the <u>underdetermined linear system</u> via <u>L₁-minimization</u>, commonly referred to as <u>Basis Pursuit Denoising</u>, to obtain the PCE coefficients.

$$\min \|\alpha\|_{1} \quad \text{subject to} \quad \|\Psi\alpha - \alpha^{*}\|_{2} \leq \delta$$

• Convergence of the coefficients can be measured with increasing sample size for improved efficiency.

Н	IAD	SUR	FACE	R	ESPC	NSE	UN	CERI	TAIN'	TY
Mall Pressure (Pa)	95% 95% Bas 95%	6 CI Lower Limit seline Reference 6 CI Upper Limit	⁰⁰ 00 00 00 00 00 00 00 00 00 00 00 00		95% Base 95%	CI Lower Limit eline Reference CI Upper Limit	100 80 60 40 20		95% C Basel 95% C	CI Lower Limit line Reference CI Upper Limit
Contributio	x (in)	Heat Flux	₂₀₀ 0	_ I _ I _ I	50 100 X (in)	150	ons to Wall	Pressure	X (in)	150 2
Uncertain Parameter	Flank 1 (T1)	Flank 2 (T5)	Shoulder (T12)		Uncertain Parameter	Flank 1 (T1)	Flank 2 (T5)	Flank 3 (T7)	Flank 4 (T9)	Shoulder (T12)
ρ_{inf}	92.7%	93.6%	91.4%		ρ_{inf}	87.7%	87.9%	87.6%	88.0%	7.1%
δ	4.5%	4.7%	4.9%		δ	10.7%	10.8%	10.8%	10.6%	92.9%
CO ₂ -CO ₂	1.6%	1.1%	2.4%		\mathbf{V}_{inf}	1.6%	1.3%	1.6%	1.4%	0.2%
V _{inf} Contributions Uncertain Parameter ρ_{inf} CO ₂ -CO ₂	1.1% to Wall S Flank 1 (T1) 62.4% 34.3%	0.6% hear Stres Flank 2 (T5) 61.9% 33.9%	1.3% 5S Uncertaint Shoulder (T12) 61.6% 36.1%	• • •	Freestream shear, and CO_2 - CO_2 constrained shear unconstrained by the shear sh	n density i pressure ollision in ertainties	is the main uncertaint teraction in - affects tr	contribute ies nportant ir ansport pr	or to wall In the wall operties	heat flux, heat flux and
δ	2.4%	2.6%	1.2%	•	HIAD defo	rmation is	particular	ly significa	int in the v	wall pressure
V	0.0%	1.6%	1 106		uncertaint	v – due to	structural	uncertaint	ies	

- Swanson, G. et al., "Structural Strap Tension Measurements of a 6-meter Hypersonic Inflatable Aerodynamic Decelerator under Static and Dynamic Loading, AIAA 2013-1287, March 2013.
- Samareh, J. A., "Discrete Data Transfer Technique for Fluid-Structure Interaction, AIAA 2007-4309," June 2007.

High-fidelity FSI modeling can be computationally expensive

Monte Carlo infeasible

	- N	- Need an efficient but accurate U			
	Paramete	r Description	Classificat		
0.27 0.21	NSTRF Y	1 Wall Pressure/Shear Stress Contributions			
	V_{inf}	Freestream Velocity (m/s)	Normal		
	$ ho_{inf}$	Freestream Density (m/s)	Uniform		
CFD grid	A	CO ₂ -CO ₂ Binary Collision Integral	Epistemic		
FUN3D NASTRAN	Structural	Boundary Condition			
	P_0	Inflation Pressure	Normal		
FEA grid	FEA grid Elastic Modulus (Tensile Stiffness)				
	E_C	Technora Cords	Epistemic		
dy (in)	E_{3K}	3-K Kevlar Straps	Epistemic		
6.18 5.74	E_{4K}	4-K Kevlar Straps	Epistemic		
	E_L	Torus Orthotropic Laminate (Longitudinal)	Epistemic		
	E_T	Torus Orthotropic Laminate (Transverse)	Epistemic		
	Poisson R	atio			
	v_c	Technora Cords	Epistemic		
1.34 0.90	v_{3K}	3-K Kevlar Straps	Epistemic		
	v_{4K}	4-K Kevlar Straps	Epistemic		
	v_{LT}	Torus Orthotropic Laminate (uniaxial)	Epistemic		
	Shear Mod	lulus (Torsional Stiffness)			
	G_{LT}	Torus Orthotropic Laminate (In-plane)	Epistemic		
Loosoly-coupled iterative process	G_{LN}	Torus Orthotropic Laminate (Transverse)	Epistemic		
LOOSEIy - COUPIEU ILEI alive process	G_{TM}	Torus Orthotropic Laminate (Transverse)	Epistemic		

RELEVANT PUBLICATIONS

- West IV, T. K. and Hosder, S., "Uncertainty Quantification of Hypersonic Reentry Flows using Sparse Sampling and Stochastic Expansions," Journal of Spacecraft and Rockets, Vol. 52, No. 1, 2015, pp. 120-133.
- Brune, A. J., West IV, T. K., Hosder, S. and Edquist, K. T., "Uncertainty Analysis of Mars Entry Flows over a Hypersonic Inflatable Aerodynamic Decelerator," Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015.
- Brune, A. J., Hosder, S., and Edquist, K. T., "Uncertainty Analysis of Fluid-Structure Interaction of a Deformable Hypersonic Inflatable Aerodynamic Decelerator," AIAA Paper to be presented at: AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, July 2015.

ACKNOWLEDGMENTS

- This work was supported by a NASA Space Technology Research Fellowship under training grant no. NNX13AL58H.
- The authors would like to thank the HIAD Structures working group at NASA Langley Research Center for providing necessary data to make this work possible, and Mike Lindell and Robert Biedron for providing guidance and technical support for the coupled fluid-structure modeling process.

