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Flight Mechanics 

Definition 

The branch of engineering that studies the motion of 

aerospace vehicles in flight when acted upon by 
gravitational, aerodynamic, propulsive, and other external 

forces. 

In this set of lectures we will focus on the flight mechanics 

of entry and descent vehicles, with an emphasis on: 

 -  deriving the necessary differential equations 

 -  modeling gravity and aerodynamic forces 

 -  numerically integrating the differential equations 
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Basic Assumptions 

•  Single, rigid, flight vehicle without rotating masses 

•  Constant mass properties (i.e., mass, moments of 
inertia, products of inertia, center of mass) 

•  The planet is flat and non-rotating (planet surface is 

used to define an inertial coordinate system) 

•  No wind 

•  The the atmospheric density, !, is a function of the 

altitude, h 

Additional assumptions are listed throughout the lecture. 
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Coordinate Systems 

Three coordinate systems are used in this lecture 

 Body Coordinate System 

 Planet Coordinate System 

 Vehicle-Carried Planet Coordinate System 

6 

Coordinate Systems 

Body Coordinate System 

 •  Cartesian (right-hand) 

 •  Fixed to the vehicle 

 •  Origin at the center of mass.  This assumption is very important.  

The equations of motion have additional terms not presented in 

these lecture notes if the origin is not at the center of mass. 

 •  Axes:  (x, y, z) 

 •  Unit vectors:  (i, j, k) 

 •  Airplane convention is: 

   -  x axis forward 

   -  z axis “down” 

   -  y axis out right wing 

   -  if possible, y = constant, is plane of symmetry (i.e., x-z  

  plane) 

 •  Not inertial 
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Coordinate Systems 

Body Coordinate System 

x, i 

z, k 

y, j 

Vehicle center 

of mass 
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Coordinate Systems 

Planet Coordinate System 

 •  Cartesian (right-hand) 

 •  Origin fixed at a specific location on the surface of 

the planet (i.e., at h = 0) 

 •  Axes:  (XP, YP, ZP) 

 •  Unit vectors:  (iP, jP, kP) 

 •  ZP axis down (i.e., h = -ZP) 

 •  ZP = 0 is surface of the planet (i.e., XP-YP plane) 

 •  XP axis points north 

 •  YP axis points east 

 •  Assumed to be inertial 



Planet Coordinate System 
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Coordinate Systems 

XP, iP 

North  

YP, jP 

East  

ZP, kP 

Down   

h 

ZP = -h = 0 
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Coordinate Systems 

Vehicle-Carried Planet Coordinate System 

 •  Cartesian (right-hand) 

 •  Origin at the vehicle center of mass (i.e., coincident 

with the origin of the body coordinate system) 

 •  Axes:  (XV, YV, ZV) 

 •  Unit vectors:  (iV, jV, kV) 

 •  Axes parallel to the planet coordinate system 

   XV || XP  !   XV axis points north 
   YV || YP  !   YV axis points east 
   ZV || ZP  !   ZV axis points down   

 •  Not inertial 



Vehicle-Carried Planet Coordinate System 
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Coordinate Systems 

XP 

YP 

ZP 

h 

XV, iV 
North 

YV, jV 
East 

ZV, kV 

Down 

x 

z 

y 

Vehicle center 

of mass 
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State Variables 

The twelve state variables that completely define the motion 

of the vehicle are: 

u, v, w  -  components of the vehicle center of mass velocity 

  vector, V, in the body coordinate system 

p, q, r  -  components of the vehicle rotation rate vector, ", 

  in the body coordinate system 

    

! 

V = ui+ vj+ wk

    

! 

" = pi+ qj+ rk

(1) 

(2) 
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State Variables 

u 

w 

v 

V 
z 

y 

x 

Definition of u, v, w, and V 
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State Variables 

p 

r 

q 

"#

x 

z 

y 

p, q, r, and " are shown by 

double arrow and arc arrow 

Definition of p, q, r, and "#
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State Variables 

$, %, &  -  Euler Angles defining the relative orientation between 

the vehicle body coordinate system (x, y, z), the planet 

coordinate system (XP, YP, ZP), and the vehicle-carried 

planet coordinate system (XV, YV, ZV) 

The rotation sequence is specified as 

$ (azimuth or yaw) about the z-axis 

% (elevation or pitch) about the y-axis 

& (bank or roll) about the x-axis 

Euler Angles are easily visualized.  However, they have problems 

with singularities.  These problems can be addressed by using 

Euler Parameters (aka quaternions) to express the relative 

orientations between the vehicle body coordinate system (x, y, z) 

and the vehicle-carried planet coordinate system (XV, YV, ZV). 
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State Variables 

Definition of $, %, and &#

YV XV 

ZV 

x 

z 

y 

$ 

% 

& 
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State Variables 

XP, YP, ZP  -  position of the vehicle’s center of mass in the 

  planet coordinate system 

XP 

YP 

ZP 

h 

Planet Surface 

North 

East 

Down 

Note that ZP < 0 for the 

vehicle position shown 
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Equations of Motion 

One first-order differential equation is needed for each state 

variables to fully characterize the vehicle’s motion.  Thus, 12 

first-order differential equations are needed.  The equations 
can be divided into two groups: 

Kinetic Equations of Motion - derived from Newton’s 2nd 

law and Euler’s Laws [6 equations:  3 force (u, v, w) - 

Newton, and 3 moment (p, q, r) - Euler] 

Kinematic Equations of Motion - describe relationships 

between motion components that do not depend on forces 

and moments [6 equations:  ($, %, &) and (XP, YP, ZP)] 
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Equations of Motion - u, v, w 

The linear momentum vector of the vehicle, p, is defined by 

(3) 

where m is the vehicle’s mass.  From Newton’s second law 

(4) 

Notice the additional term "  x p.  This term arises because 
the body coordinate system is rotating.  F is the external 

forces vector (e.g., gravitational, aerodynamic, buoyancy, 

propulsive forces). 

    

! 

p = mV

    

! 

F =
dp

dt
+"#p
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Equations of Motion - u, v, w 

Fx 

Fz 

Fy 

F 
z 

y 

x 

Definition of Fx, Fy, Fz, and F 
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Performing the indicated operations on the right hand side 

of equation (4) yields 

(5) 

Equations of Motion - u, v, w 

      

! 

F = m
du

dt
+ qw " rv

# 

$ 
% 

& 

' 
(  i+m

dv

dt
+ ru" pw

# 

$ 
% 

& 

' 
(  j

+ m
dw

dt
+ pv " qu

# 

$ 
% 

& 

' 
(  k
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Equation (5) can be rewritten in terms of its scalar 

components to yield the differential equations for u, v, and 

w.  Fx, Fy, and Fz are the scalar components of the external 
forces vector. 

(6) 

(7) 

(8) 

Equations of Motion - u, v, w 

  

! 

du

dt
= "qw + ru+

Fx

m

  

! 

dv

dt
= "ru+ pw +

Fy

m

  

! 

dw

dt
= "pv + qu+

Fz

m
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The angular momentum vector, L, about the origin of the 

body coordinate system (i.e., vehicle center of mass), is 

given by 

(9) 

Where rm is the position vector of an infinitesimal mass 

element dm 

(10) 

Equations of Motion - p, q, r 

      

! 

L = r
m
" #" r

m( )[ ]
Vol
$  dm

= # r
m

•r
m( ) % r

m
#•r

m( )[ ]
Vol
$  dm

    

! 

r
m

= x
m
i+ y

m
j+ z

m
k
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Define the moments of inertia Ixx, Iyy, and Izz as 

(11) 

and the products of inertia as 

(12) 

Beware that a different sign convention is sometimes used for the products of 
inertia.  Also note that the moments and products of inertia as defined here are 

about the vehicle’s center of mass (i.e., the body coordinate system origin). 

Equations of Motion - p, q, r 

      

! 

Ixx = ym

2 + zm

2( )Vol
"  dm

Iyy = xm

2 + zm

2( )Vol
"  dm

Izz = xm

2 + ym

2( )Vol
"  dm

      

! 

Ixy = xmymVol
"  dm

Ixz = xmzmVol
"  dm

Iyz = ymzmVol
"  dm
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Equations of Motion - p, q, r 

Performing the integration described in equation (9) and using the 

definitions of the moments and products of inertia in equations (11) and 

(12) allows the angular momentum vector to be written as 

(13) 

The (p, q, r) equations of motion can be obtained from 

(14) 

Where M is the external moments vector (e.g., gravitational, 

aerodynamic, buoyancy, propulsive moments) about the body 

coordinate system origin (i.e., vehicle center of mass).  Notice the 

additional term "  x L.  Again, this term arises because the body 

coordinate system is rotating. 

      

! 

L = Ixxp - Ixyq - Ixzr( )i+ -Ixyp + Iyyq - Iyzr( ) j

+ -Ixzp - Iyzq + Izzr( )k

    

! 

M =
dL

dt
+"#L
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Equations of Motion - p, q, r 

Note:  In the literature, the components of the external moments vector, (Mx, My, Mz), are 

usually denoted by (l, m, n) or (L, M, N). 

Mx 

Mz 

My 

M  

x 

z 

y 

Mx, My, Mz, and M are shown 

by double arrow and arc arrow 

Definition of Mx, My, Mz, and M 
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Equations of Motion - p, q, r 

Performing the indicated operations on the right hand side 

of equation (14) yields 

(15) 

      

! 

M =

Ixx

dp

dt
" Ixy

dq

dt
" Ixz

dr

dt

"q Ixzp + Iyzq" Izzr( )
"r "Ixyp + Iyyq" Iyzr( )

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 i+

"Ixy

dp

dt
+ Iyy

dq

dt
" Iyz

dr

dt

"p "Ixzp" Iyzq + Izzr( )
"r "Ixxp + Ixyq + Ixzr( )

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 j

+ 

"Ixz

dp

dt
" Iyz

dq

dt
+ Izz

dr

dt

"p Ixyp" Iyyq + Iyzr( )
"q Ixxp" Ixyq" Ixzr( )

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 k

28 

Equations of Motion - p, q, r 

Equation (15) can be rewritten in terms of its scalar 

components to yield the differential equations for p, q, and r.  

Mx, My, and Mz are the scalar components of the external 
moments vector.  These are often known as Euler’s 

Equations of Motion. 

(16) 

(17) 

(18) 

  

! 

Ixx

dp

dt
" Ixy

dq

dt
" Ixz

dr

dt
= q Ixzp + Iyzq" Izzr( ) + r "Ixyp + Iyyq" Iyzr( ) +Mx

    

! 

"Ixy

dp

dt
+ Iyy

dq

dt
" Iyz

dr

dt
= p "Ixzp" Iyzq + Izzr( ) + r "Ixxp + Ixyq + Ixzr( ) + My

  

! 

"Ixz

dp

dt
" Iyz

dq

dt
+ Izz

dr

dt
= p Ixyp" Iyyq + Iyzr( ) + q Ixxp" Ixyq" Ixzr( ) +Mz
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Equations of Motion - $, %, & 

The kinematic relationships between the derivatives of         

($, %, &), and the components of the rotation rate vector,   

(p, q, r), are given by 

(19) 

(20) 

(21) 

The derivation of these equations is too extensive to be 

presented here - see appendix A. 

Note the difficulties that arise with equations (19) and (21) 

when % = ±'/2. 

  

! 

d" dt = qsin# + rcos#( )sec$

  

! 

d" dt = qcos# $ rsin#

  

! 

d" dt = p + qsin" + rcos"( )tan#
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Equations of Motion - XP, YP, ZP 

The kinematic relationships between the derivatives of         

(XP,YP, ZP), and the components of the velocity vector, (u, v, w), 

are given in matrix form by 

(22) 

Where [TBP] is a transformation matrix from the body to the planet 

coordinate system and the vehicle-carried planet coordinate 

system.  This matrix is a function of the Euler Angles ($, %, &) and 

is given in the next slide.  The derivation of this matrix is too 

extensive to be presented here - see appendix B. 

Note that [TBP] is orthogonal, and thus its inverse is equal to its 

transpose:  [TBP]-1 = [TBP]T. 

  

! 

dX
P

dt

dY
P

dt

dZ
P

dt

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

= T
BP[ ]

u

v

w

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 
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Equations of Motion - XP, YP, ZP 

  

! 

T
BP[ ] =

cos"cos# sin$sin"cos# - cos$sin# cos$sin"cos#+ sin$sin#

cos"sin# sin$sin"sin#+ cos$cos# cos$sin"sin# - sin$cos#

-sin" sin$cos" cos$cos"

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

(23) 
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Euler Parameters / Quaternions 

As has been noted, Euler Angles have problems with the singularity at 

% = ±'/2.  These problems can be avoided by using Euler Parameters 

(aka quaternions):  (1, (2, (3, (4.  Euler Parameters replace Euler 

Angles for describing the orientation of the body coordinate system 

with respect to the planet coordinate system and the vehicle-carried 

planet coordinate system.  The four Euler Parameters become new 

state variables.  With this replacement there are 13 equations of 

motion to integrate instead of 12. 

A drawback of Euler Parameters is that the attitude of the vehicle is 

not obvious from the values of (1, (2, (3, and (4.  This drawback can be 

overcome by integrating the equations of motion using Euler 

Parameters, but then reporting the orientation of the vehicle in terms 

of Euler Angles - which are calculated from the Euler Parameters. 

For more on Euler Angles and Euler Parameters see appendix E of 

reference 1 (be aware of slightly different notation used in this 

reference). 
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Euler Parameters / Quaternions 

  

! 

d"1

dt
=
"4p# "3q+"2r

2

  

! 

d"2

dt
=
"3p+"4q# "1r

2

  

! 

d"3

dt
=
#"2p+"1q+"4r

2

  

! 

d"4

dt
=
#"1p# "2q# "3r

2

(24) 

(25) 

(26) 

(27) 
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Euler Parameters / Quaternions 

  

! 

T
BP[ ] =

"
1

2 # "
2

2 # "
3

2 +"
4

2
2 "

1
"

2
# "

3
"

4( ) 2 "
1
"

3
+ "

2
"

4( )
2 "

1
"

2
+"

3
"

4( ) #"
1

2 +"
2

2 # "
3

2 +"
4

2
2 "

2
"

3
# "

1
"

4( )
2 "

1
"

3
# "

2
"

4( ) 2 "
2
"

3
+"

1
"

4( ) #"
1

2 # "
2

2 +"
3

2 + "
4

2

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

(28) 

The transformation matrix [TBP] can be written in terms of 

the Euler Parameters as 
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Euler Parameters / Quaternions 

Once the transformation  matrix [TBP] is known, by calculating it 

from equation (28), the Euler Angles can be determined from 

In programming the equations for $ and &, a version of arctan that 
determines the correct quadrant for the angle must be used.  This 

arctan function is usually known as “ATAN2”. 

  

! 

" = arctan T
21

BP
T

11

BP( )          # $ < " % $

  

! 

" = arcsin -T
31

BP( )          # $ 2 % " % $ 2

  

! 

" = arctan T
32

BP
T

33

BP( )          # $ < " % $

(29) 

(30) 

(31) 
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Euler Parameters / Quaternions 

From the transformation matrix [TBP] the Euler Parameters 

can be determined from 

  

! 

tr T
BP[ ] = T

11

BP + T
22

BP + T
33

BP

(32) 

(33) 

(34) 

(35) 

(36) 

  

! 

"
4

= tr T
BP[ ] +1( ) 4

  

! 

"
1

= T
32

BP
#T

23

BP( ) 4"
4

  

! 

"
2

= T
13

BP
#T

31

BP( ) 4"
4

  

! 

"
3

= T
21

BP
#T

12

BP( ) 4"
4
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Euler Parameters / Quaternions 

The Euler Parameters satisfy the relationship 

Because of roundoff error during numerical integration of equations 

(24) to (27), the relationship shown in equation (37) may cease to 

be met.  The Euler Parameters then need to be renormalized.  One 

approach is to multiply them by the constant K( 

Thus, the renormalized values of the Euler Parameters are 

In appendix E of reference 1, a different way of renormalizing the 
Euler Parameters is presented. 

  

! 

"
1

2
+ "

2

2
+ "

3

2
+ "

4

2
= 1 (37) 

(38) 

(39) 

  

! 

K" = 1 "
1

2
+ "

2

2
+ "

3

2
+ "

4

2

    

! 

"
iR

= K""i
    for i = 4
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External Forces and Moments 

External forces and moments can arise from several sources, 

including:  gravitational, aerodynamic, buoyancy, and 

propulsive. 

In this set of lecture notes only two of these will be considered 

 •  Gravitational.  Described by the force and moment 

vectors, Fg and Mg, and their scalar components. 

 •  Aerodynamic.  Described by the force and moment 

vectors, FA and MA, and their scalar components. 
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  F = Fg + FA 

  Fx = Fg,x + FA,x 

  Fy = Fg,y + FA,y 

  Fz = Fg,z + FA,z 

  M = Mg + MA 

  Mx = Mg,x + MA,x 

  My = Mg,y + MA,y 

  Mz = Mg,z + MA,z 

Note:  all components of vectors on this slide are in the body 

coordinate system. 

 (40) 

 (41) 

 (42) 

 (43) 

 (44) 

 (45) 

 (46) 

 (47) 

External Forces and Moments 

Thus, for our purposes 
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External Forces and Moments - Gravity 

Let W be the weight of the vehicle 

 W = mg  (48) 

The gravity force vector can be expressed in terms of the 

planet coordinate system as 

 Fg = (0) iP + (0) jP + W kP  (49) 

This vector needs to be expressed in terms of the body 

coordinate system.  To do this the transformation matrix [TBP]T 

is used. 
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External Forces and Moments - Gravity 

  

! 

Fg,x

Fg,y

Fg,z

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

= TBP[ ]
T

0

0

W

" 

# 
$ 

% 
$ 

& 

' 
$ 

( 
$ 

Using the expressions for [TBP] in equations (23) and (28), 

the scalar components of the gravity vector in the body 

coordinate system can be written as  

(50) 
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External Forces and Moments - Gravity 

    

! 

Fg,x = "Wsin#

= 2W $1$3 " $2$4( )
(51) 

(52) 

(53) 

    

! 

Fg,y = Wsin"cos#

= 2W $2$3 + $1$4( )

    

! 

Fg,z = Wcos"cos#

= W $%1

2 $ %2

2 + %3

2 + %4

2( )
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External Forces and Moments - Gravity 

Notice that since we have defined the origin of the body 

coordinate system to be at the center of mass of the vehicle, 

the moment vector due to gravity, Mg, (and thus all its 
component) in the body coordinate system are zero. 

 Mg = 0  (54) 

 Mg,x = 0  (55) 

 Mg,y = 0  (56) 

 Mg,z = 0  (57) 
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External Forces and Moments - Aero 

Modeling the aerodynamic forces and moments is difficult.  

The end result is just that - a model. 

In this set of lecture notes the aerodynamic forces and 

moments are modeled as follows 

 FA,x = -Axial Force = -A = -q
!
SCA  (58) 

  FA,y = Side Force = Y = q
!
SCY  (59) 

  FA,z = -Normal Force = -N = -q
!
SCN  (60) 



45 

External Forces and Moments - Aero 

A – axial force 

Y – side force 
N – normal force 

A, Y, and N, as 

shown, are positive 

x 

N 

A 

z 

Y 

y 
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External Forces and Moments - Aero 

  (61) 

  (62) 

  (63) 

    

! 

MA,x = Roll Moment = q"SDCl + q"SDClp
p

D

2V"

# 

$ 
% 

& 

' 
( 

) 

* 
+ 
+ 

, 

- 
. 
. 

  

! 

MA,y = Pitch Moment = q"SDCm + q"SDCm
q + 

d#

dt

$ 

% 
& 

' 

( 
) 

q + d# dt

2

$ 

% 
& 

' 

( 
) 

D

2V"

$ 

% 
& 

' 

( 
) 

* 

+ 
, 
, 

- 

. 
/ 
/ 

  

! 

MA,z = Yaw Moment = q"SDCn + q"SDCn
r - 

d#

dt

$ 

% 
& 

' 

( 
) 

r * d# dt

2

$ 

% 
& 

' 

( 
) 

D

2V"

$ 

% 
& 

' 

( 
) 

+ 

, 
- 
- 

. 

/ 
0 
0 
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External Forces and Moments - Aero 

Where, 

  (64) 
 (airspeed) 

  (65) 

 (dynamic pressure) 

Note that V
!
 can be defined as shown in equation (64) because 

we have assumed no wind, and thus the velocity components     

(u, v, w) are the same as the airspeed components (u
!
, v

!
, w

!
).  If 

there is wind the velocity and airspeed components will not be the 

same!  The wind will need to be taken into account to determine 

the airspeed components and the airspeed.  Also, remember that 

the atmospheric density, !, is a function of the altitude, h = -ZP. 

  

! 

V" = u
2

+ v
2

+ w
2

  

! 

q" = 1

2
#V"

2
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External Forces and Moments - Aero 

Comments on Equations (58) to (63) 

•  The reference area for all aerodynamic coefficients is S. 

•  The reference length for all aerodynamic coefficients is D. 

•  The approach used here is to define the static aerodynamic coefficients 

CA and CN in the body coordinate system as is usually done for entry 

vehicles.  In aircraft applications it is common to use the equivalent 

static aerodynamic coefficients CL and CD (lift and drag, respectively).  

The transformation between (CA, CN) and (CL, CD) is a simple one 

involving the angle of attack, ).  I leave it up to you to derive it. 

•  It is assumed here that the aerodynamic coefficients can only be 

functions of the vehicle geometry, location of the vehicle center of 

mass, the instantaneous value of the state variables and their 

derivatives (which include the angle of attack, angle of sideslip, and 

their derivatives), the Mach number, the Reynolds number, and the 

Knudsen number as appropriate. 
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External Forces and Moments - Aero 

•  CA, CY, CN, Cl, Cm, Cn are static aerodynamic coefficients because they 

contribute forces and moments that are not functions of rate-dependent 

quantities such as (p, q, r) and (d)/dt and d*/dt). 

•  The moment aerodynamic coefficients, both static (Cl, Cm, Cn) and 

dynamic (Clp, Cm(q+d)/dt), Cn(r-d*/dt)), depend on the location of the 

vehicle’s center of mass.  The values of the static moment 

aerodynamic coefficients can be easily shifted from one center of mass 

location to another.  However, the dynamic moment aerodynamic 

coefficients usually cannot be shifted. 

•  The nondimensionalizing term D/(2V
!
) in equations (61) to (63) is not 

universal.  Using D/V
!
 is also common.  Sometimes different reference 

lengths are used for each one of these equations.  Be careful when 

using and interpreting dynamic moment aerodynamic coefficients - be 

sure you are clear as to the nondimensionalization scheme. 
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External Forces and Moments - Aero 

•  In practice it is very difficult to separate the q and d)/dt portions 

of the dynamic pitching moment coefficients.  Similarly for r and 

d*/dt.  Thus, they are often used in combination as shown in 

equations (62) and (63). 

•  Notice the sign difference in the term (q + d)/dt) and (r - d*/dt) in 

equations (62) and (63).  These differences are due to the 

definitions of ) and *.  This point will be discussed later in the 

relative wind angles section of these lecture notes. 

•  When using legacy aerodynamic coefficient data be clear as to 

how they were nondimensionalized, the assumed reference 

areas and lengths, and the assumed units (e.g., radians or 

degrees?). 
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The static and dynamic aerodynamic coefficients are usually 

specified as functions of the angle of attack, ), and the angle 

of sideslip, *#

 (66) 

 (67) 

Relative Wind Angles 
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The following should be noted regarding ) and *: 

•  ) and * are functions of the state variables 

•  Only two angles, ) and *, are required to fully specify the direction of the 
relative wind. 

•  The definitions of ) and * given in equations (66) and (67) are standardized in 
the literature. 

•  If u and w are zero, ) is not defined.  If V
!
 is zero, * is not defined. 

•  In programming the equation for ), a version of arctan that determines the 

correct quadrant for the angle must be used.  This arctan function is usually 
known as “ATAN2”. 

•  The definitions for ) and * are not symmetric.  Note the difference in the inverse 
trigonometric function used, and the differences in the domains of ) and *. 

•  Note that ) and * can be defined as shown in equations (66) and (67) using   
(u, v, w) because we have assumed no wind, and thus the velocity components 

(u, v, w) are the same as the airspeed components (u
!
, v

!
, w

!
).  If there is wind 

the velocity and airspeed components will not be the same!  The wind will need 
to be taken into account to determine the airspeed components, and ) and *. 

•  If (u, v, w) are known, then (), *, V
!
) can be determined.  Conversely, if          

(), *, V
!
) are known, (u, v, w) can be determined. 

Relative Wind Angles 
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Relative Wind Angles 

Definition of ) and *#

x 
y 

z 

)#

*#

u 

v 

w 

V 
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The relative wind direction can also be specified in terms of 

the total angle of attack, )T, and the total angle of attack 

clock angle, &)T#

 (68) 

 (69) 

Relative Wind Angles 

  

! 

"
T

= arccos
u

V#

$ 

% 
& 

' 

( 
)           0 * "T

* +

  

! 

"#T

= arctan
v

w

$ 

% 
& 

' 

( 
)           - * < "#T

+ *



55 

The following should be noted regarding )T and &)T: 

•   )T and &)T are functions of the state variables 

•  Only two angles, )T and &)T, are required to fully specify the direction of the 
relative wind. 

•  The definition of )T given in equation (68) is standardized in the literature.  
However, the definition of &)T is not.  When reading the literature and/or 

analyzing data make sure you understand how &)T is defined. 

•  If V
!
 is zero, )T is not defined.  If v and w are zero, &)T is not defined. 

•  In programming the equation for &)T, a version of arctan that determines the 
correct quadrant for the angle must be used.  This arctan function is usually 

known as “ATAN2”. 

•  Note that )T and &)T can be defined as shown in equations (68) and (69) using 

(u, v, w) because we have assumed no wind, and thus the velocity components 

(u, v, w) are the same as the airspeed components (u
!
, v

!
, w

!
).  If there is wind 

the velocity and airspeed components will not be the same!  The wind will need 

to be taken into account to determine the airspeed components, and ) and *. 

•  If (u, v, w) are known, then ()T, &)T, V
!
) can be determined.  Conversely, if        

()T, &)T, V
!
) are known, (u, v, w) can be determined. 

Relative Wind Angles 
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Relative Wind Angles 

Definition of )T and &)T#
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Relative Wind Angles 

The relative wind direction can be specified in terms of either 

(), *) or ()T, &)T).  We can go from one set to the other by 

using the following equations 

  

! 

" = arctan
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T
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(70) 

(71) 

(72) 

(73) 
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The following should be noted regarding equations (70) to (73): 

•  Only one set of two angles, (), *) or ()T, &)T), is required to fully specify 

the direction of the relative wind.  Once one set is known, the other one 

can be calculated. 

•  In programming equations (70) and (73), a version of arctan that 

determines the correct quadrant for the angle must be used.  This 

arctan function is usually known as “ATAN2”. 

•  Do not simplify the terms inside the inverse tangent function.  For 

example, in equation (70) do not simplify 

   [(sin)Tcos&)T)/cos)T] 

 into 

   tan)Tcos&)T 

 Information regarding the quadrant for the angle will be lost. 

•  Earlier comments regarding ), *, )T, and &)T are still valid, including 

those remarks regarding situations when the various angles are not 

defined. 

Relative Wind Angles 
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In some aerodynamic model formulations the derivatives of 

the relative wind angles with respect to time will be needed.  

These derivatives can be determined directly from the state 
variables as shown below.  They are derived from equations 

(66) to (69) by the use of calculus, algebra, and some 

trigonometric identities;  I leave it up to you to verify their 

derivation. 

Relative Wind Angles 
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Relative Wind Angles 

(74) 

(75) 

(76) 

(77) 
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Relative Wind Angles 

The following should be noted regarding equations (74) to (77): 

•  The angular units of these equations are radians.  Since we 

usually use seconds as the time units, the units of the derivatives 

are radians/second. 

•  Again, note that in the following equations (u, v, w) and derived 

quantities are used.  We can do this because we have assumed 

no wind.  In the presence of wind (u, v, w) and quantities 

calculated from them need to be replaced by the airspeed 

components (u
!
, v

!
, w

!
), respectively. 

•  Sometimes these derivatives are calculated by finite differencing 

within computer codes.  When wind is not zero, finite differencing 

may be the only way to obtain these derivatives. 

•  There are cases for which these derivatives are not defined. 
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Example Aerodynamic Model 

To define an example aerodynamic model let us consider a blunt-body 

entry vehicle.  We will assume the following: 

 •  The vehicle is traveling at supersonic speeds.  In the flight regime of 

interest for this model the aerodynamic coefficients are often 

insensitive to Mach number.  Here we make the approximation that 

they are independent of Mach number. 

 •  The vehicle is geometrically axisymmetric, but the center of mass is 

not on the axis of symmetry. 

 •  Data are available for the static and dynamic aerodynamic 

coefficients. 

 •  The reference length for the aerodynamic data is the vehicle’s 

maximum diameter, D.  The reference length for the aerodynamic 

data is based on D:  S = '(D/2)2. 
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Example Aerodynamic Model 

Static Aerodynamic Coefficients  

•  The model coordinate system has axes (+, ,, -).  The + axis is 

coincident with the axis of symmetry of the entry vehicle. 

•  The (+, ,, -) axes are parallel to the body coordinate system axes    

(x, y, z), respectively. 

•  The center of mass of the vehicle (i.e., the origin of the body 

coordinate system) is located at (+CM, ,CM, -CM) in the model 

coordinate system.  The vector from the origin of the model coordinate 

system to the origin of the body coordinate system is rCM. 

•  Because the vehicle is axisymmetric, the static aerodynamic 

coefficients are given as functions of the total angle of attack, )T, only, 

in terms of axisymmetric aerodynamic coefficients: 

CAT()T),   CNT()T),   ClOT()T),   CmOT()T) 
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Example Aerodynamic Model 

*Given our assumption of no wind, the velocity vector, V, is the same as the 

airspeed vector, V
!
.  When there is wind this will not generally be the case.  It is 

the airspeed velocity vector that is needed to determine the relative wind angles, 

airspeed, and dynamic pressure. 

Static Aerodynamic Coefficients - Continued 

•  Because the vehicle is axisymmetric, the aerodynamic forces vector 

components specified by CAT and CNT lie in the plane specified by the 

+ axis and the velocity vector V.* 

•  Because the vehicle is axisymmetric, the aerodynamic moment vector 

component specified by CmOT()T) is perpendicular to the plane 

specified by the + axis and the velocity vector V.*  Also note that this 

moment is about the origin, O, of the (+, ,, -) coordinate system, not 

about the origin of the body coordinate system (x, y, z) which is 

centered on the vehicle’s center of mass. 

•  Because the vehicle is axisymmetric, the roll moment coefficient about 

the + axis, ClOT, is zero. 
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Example Aerodynamic Model 

Static Aerodynamic Coefficients - Continued 

•  Because the vehicle is axisymmetric, CNT = 0 and CmOT = 0 when 

#)T = 0. 

•  The aerodynamic forces associated with axisymmetric static 

aerodynamic coefficients are 

AT = q
!
SCAT 

NT = q
!
SCNT 

LOT = q
!
SDClOT 

MOT = q
!
SDCmOT 

(78) 

(79) 

(80) 

(81) 
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Example Aerodynamic Model 
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Example Aerodynamic Model 
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Example Aerodynamic Model 
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Example Aerodynamic Model 
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Example Aerodynamic Model 

Static Aerodynamic Coefficients - Continued 

The static aerodynamic coefficients, CA, CY, CN, Cl, Cm, and Cn, in the 

body coordinate system can be calculated from the following equations.  

Note that the roll, pitch, and yaw moments must be transferred to the 

body coordinate system origin (i.e., the vehicle’s center of mass).  The 

derivation of these equations is presented in appendix C. 
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C
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(83) 

(84) 
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Example Aerodynamic Model 

Static Aerodynamic Coefficients - Continued 
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Example Aerodynamic Model 

Some comments regarding the static aerodynamic 

coefficients just presented. 

•  The formulation presented for the static aerodynamic 

coefficients, CA, CY, CN, Cl, Cm, and Cn, in equations (82) 

to (87) are in terms of the total angle of attack, )T, and the 
total angle of attack clock angle, &)T. 

•  Even though the vehicle has been assumed to be 

axisymmetric, the roll moment coefficient about the center 

of mass, Cl, is not necessarily always zero if the vehicle’s 
center of mass is not on the body’s axis of symmetry. 
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Example Aerodynamic Model 

Dynamic Aerodynamic Coefficients  

•  For this example we assume that the dynamic aerodynamic 

coefficients Clp, Cm(q+d)/dt), and Cn(r-d*/dt) have been determined from a 

ballistic range test with the correct center of mass location. 

•  Cm(q+d)/dt) is assumed to be a function of ). 

•  Cn(r-d*/dt) is assumed to be a function of *. 

•  The functional forms of Cm(q+d)/dt) and Cn(r-d*/dt)  can depend greatly on 

the vehicle - no specific form is given here. 

•  Identifying appropriate values of Clp, Cm(q+d)/dt), and Cn(r-d*/dt), even 

when a lot of data available, is difficult. 

•  The values of the dynamic aerodynamic coefficients cannot be easily  

transferred to another center of mass location - usually a new set of 

tests is required. 
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Flight Path Angle 

It is often of interest to know what is the orientation of the velocity vector, V, with 

respect to the local horizontal (i.e., surface of the planet).  This orientation is 
often given in terms of the flight path angle, ., defined by 

  

! 

" = arctan
- dZ

P
dt( )

dX
P

dt( )
2

+ dY
P

dt( )
2

# 

$ 

% 
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& 

' 

( 
( 
          - ) 2 < " * ) 2 (88) 

Note the following: 

 •  The flight path angle only describes the orientation of the velocity vector, V, 

above (. > 0) or below (. < 0) the horizon.  It does not include information 
regarding the direction in the (XP, YP) plane (i.e., north, east, south, west). 

 •  The opposite sign convention, . > 0 below the horizon, is also commonly 
used in the literature. 

 •  Other quantities also called “flight path angle” can also be defined.  Be clear 

as to which one is being used. 

 •  In programming equation (88), a version of arctan that determines the 

correct quadrant for the angle must be used.  This arctan function is usually 
known as “ATAN2”. 
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Flight Path Angle 

Planet Surface 
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Numerical Integration of the Equations of Motion 

Ordinary differential equations (ODEs) can be divided into two groups: 

 Explicit ODEs:   d//dt = fe(/, t) 

 Implicit ODEs:   fi(d//dt, /, t) = 0 

Although all explicit ODEs can be written in Implicit form, not all implicit 

ODEs can be written in Explicit form. 

The equations above can stand for a set of coupled ODEs such as 

those discussed in this lecture. 

Note that the description “Explicit” and “Implicit” are used here to 

describe the nature of the differential equations - not the numerical 

algorithm used to integrate them.  These terms are used with a different 

meaning to describe numerical integration algorithms - this second 

sense is not used in these lecture notes. 

Different numerical algorithms are used to integrate explicit and implicit 

ODEs. 
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Numerical Integration of the Equations of Motion 

For the types of flight mechanics problems discussed in this lecture… 

Case 1 

IF the external force and moment vectors depend only on the state 

variables, and do not depend on the time derivatives of the state 

variables, it is possible to write the equations of motion ODEs in explicit 

form. 

Case 2 

IF the external force and moment vectors depend on the state variables, 

and are linearly dependent on the time derivatives of the state variables, 

it is possible to write the equation of motion ODEs in explicit form. 

Case 3 

IF the external force and moment vectors are nonlinearly dependent on 

the time derivatives of the state variables, it may not be possible to write 

the equations of motion ODEs in explicit form. 
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Numerical Integration of the Equations of Motion 

Note the following: 

•  In this set of lecture notes we are only considering gravity and 

aerodynamic forces and moments. 

•  The gravity force and moment vectors in equations (49) to (57) are 

only dependent on the state variables, they do not include any time 

derivatives of the state variables. 

•  The model described by equations (58) to (63) for the aerodynamic 

force and moment vectors depend on the state variables, and linearly 

on the time derivatives of the state variables through the terms d)/dt 

and d*/dt in equations (62) and (63). 

If we then assume that all the aerodynamic coefficients (static and 

dynamic) are only functions of the state variables, and not on the time 

derivatives of the state variables, then the equations of motion, including 

the force and moment vectors as modeled here, fall under Case 2 in the 

previous slide. 
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Numerical Integration of the Equations of Motion 

Numerical Integration Algorithms 

The most common numerical integration algorithms require that 

the ODEs be written in explicit form 

 d//dt = fe(/, t) 

Runge-Kutta methods are common for solving explicit ODEs.  

The solver “ode45” in MATLAB uses this method. 

More difficult to find are numerical integration algorithms for 

ODEs written in implicit form 

 fi(d//dt, /, t) = 0 

The solver “ode15i” in MATLAB can integrate implicit ODEs. 

80 

Numerical Integration of the Equations of Motion 

Where am going with all this? 

If you are writing your own code to solve flight mechanics problems as 
posed here, you will need to decide in which form you are going to, or can, 

write the ODEs.  Then, you will have to choose an appropriate numerical 

integration algorithm. 

You can always write the ODEs in implicit form, and use a numerical 
integration algorithm intended for use with implicit ODEs. 

Sometimes additional approximations are made.  Specifically, the equations 

of motion ODEs will be written in “pseudo-explicit” form, with the external 

force and moment vectors on the right hand side of the equations, even 
though these vectors may depend on time derivatives of the state variables.  

A numerical integration algorithm for explicit ODEs will be used, and time 

derivatives of the state variables in the right hand side of the equations will 

be determined by finite differencing.  Note that doing this adds an additional 

level of approximation in the numerical integration of the ODEs - you will 
have to decide whether this approximation yields acceptable results. 
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Numerical Integration of the Equations of Motion 

Some remaining points… 

Notice that equations (16) to (18) include all three derivatives dp/dt,    

dq/dt, and dr/dt in each of the equations.  You can rewrite these 

equations to yield: 
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Numerical Integration of the Equations of Motion 

where, 
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(91) 

I leave it up to you to re-derive these equations. 

Note that equation (85) is not necessarily in explicit form.  If the external 

moments contain time derivatives of the state variables (for example 

terms involving d)/dt and/or d*/dt), equation (85) is not in explicit form. 
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Numerical Integration of the Equations of Motion 

Initial Conditions 

To integrate the equations of motion for a particular case, 
you will need the initial conditions. 

If the ODEs are in explicit form, you will only need initial 

conditions for the state variables. 

If the ODEs are in implicit form, you will need initial 

conditions for the state variables and their time derivatives.  

The initial conditions for the state variables time derivatives 

can be calculated from the ODEs - they depend only on the 

initial conditions for the state variables.  However, this 
calculation may need to be performed numerically. 
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Symbols 

A  axial force 

AT  axisymmetric axial force acting at the origin of the model 

coordinate system (O) 

[A]  moment and product of inertia matrix 

[B]  moment and product of inertia matrix 

CA  axial force coefficient 

CAT  axisymmetric axial force coefficient 

CD  drag coefficient 

CL  lift coefficient 

Cl  roll moment coefficient 

ClOT  axisymmetric roll moment coefficient 

Clp  roll moment dynamic coefficient 

Cm  pitch moment coefficient 

CmOT  axisymmetric pitch moment coefficient 

Cm(q+d)/dt)  pitch moment dynamic coefficient 

CN  normal force coefficient 

CNT  axisymmetric normal force coefficient 

Cn  yaw moment coefficient 

Cn(r-d*/dt)  pitch moment dynamic coefficient 

CY  side force coefficient 

D  reference length 
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Symbols 

F  external forces vector 

FA  aerodynamic force vector 

FA,x, FA,y, FA,z  components of the aerodynamic force vector, FA, in the body 

coordinate system 

Fg  gravitational force vector 

Fg,x, Fg,y, Fg,z  components of the gravitational force vector, Fg, in the body 

coordinate system 

Fx, Fy, Fz  components of the external forces vector, F, in the body 

coordinate system 

fe, fi  functions 

g   acceleration of gravity 

h   altitude 

Ixx, Iyy, Izz  moments of inertia about the vehicle’s center of mass 

Ixy, Ixz, Iyz  products of inertia about the vehicle’s center of mass 

i, j, k  unit vectors for the body coordinate system 

iP, jP, kP  unit vectors for the planet coordinate system 

iV, jV, kV  unit vectors for the vehicle-carried planet coordinate system 

K(  renormalizing factor for the Euler Parameters 

L  angular momentum vector 

LOT  axisymmetric roll moment acting at the origin of the model 

coordinate system 
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Symbols 

M  external moments vector about the body coordinate system origin 

(i.e., vehicle center of mass) 

MA  aerodynamic moment vector about the body coordinate system 

origin (i.e., vehicle center of mass) 

MA,x, MA,y, MA,z  components of the aerodynamic moment vector, MA, in the body 

coordinate system 

Mg  gravitational moment vector about the body coordinate system 

origin (i.e., vehicle center of mass) – zero in the present 

discussion 

Mg,x, Mg,y, Mg,z  components of the aerodynamic moment vector, Mg, in the body 

coordinate system – zero in the present discussion 

MOT  axisymmetric pitch moment acting at the origin of the model 

coordinate system (O) 

Mx, My, Mz  components of the external moments vector, M, in the body 

coordinate system 

m  vehicle mass 

N  normal force 

NT  axisymmetric normal force acting at the origin of the model 

coordinate system (O) 

p  linear momentum vector 

p, q, r  components of the vehicle rotation rate vector, ", in the body 

coordinate system 
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Symbols 

q
!

 dynamic pressure 

rCM  vector from the origin of the model coordinate system (O) to the 

origin of the body coordinate system (center of mass) 

rm  position vector of an infinitesimal mass element dm 

S  reference area 

[TBP]  rotation matrix from the body to the planet coordinate system and 

the vehicle-carried planet coordinate system 

 element i, j = 1,2,3 of the matrix [TBP] 

t  time 

u, v, w  components of the vehicle center of mass 

  velocity vector, V, in the body coordinate system 

u
!
, v

!
, w

!
 components of the vehicle center of mass airspeed vector, V

!
, in 

the body coordinate system;  same as (u, v, w) when there is no 

wind 

V   velocity vector of the vehicle center of mass;  same as V
!
 when 

there is no wind 

V
!

 airspeed vector of the vehicle center of mass;  same as V when 

there is no wind 

V
!

 airspeed 

W  vehicle weight 

XP, YP, ZP  planet coordinate system axes 
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Symbols 

XV, YV, ZV  vehicle-carried planet coordinate system axes 

x, y, z  body coordinate system axes 

xm, ym, zm  components of the position vector, rm, in the body coordinate 

system 

Y  side force 

)  angle of attack 

)T  total angle of attack 

*! angle of sideslip 

.  flight path angle 

(1, (2, (3, (4  Euler Parameter 

(1R, (2R, (3R, (4R  renormalized Euler Parameter#

%! elevation (pitch) Euler Angle 

+, ,, -  model axes 

+CM, ,CM, -CM  location of the vehicle’s center of mass in the model axes 

!  atmospheric density  

&! bank (roll) Euler Angle 

&)T  total angle of attack clock angle 

/  generic state variable#

$  azimuth (yaw) Euler Angle 

"  vehicle rotation rate vector 
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