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The use of Solar Electric Propulsion (SEP) can provide significant benefits for the human 
exploration of near-Earth asteroids.  These benefits include substantial cost savings – 
represented by a significant reduction in the mass required to be lifted to low Earth orbit – 
and increased mission flexibility. To achieve these benefits, system power levels of 100’s of 
kW are necessary along with the capability to store and process tens of thousands of 
kilograms of xenon propellant.  The paper presents a conceptual design of a 300-kW SEP 
vehicle, with the capability to store nearly 40,000 kg of xenon, to support human missions to 
near-Earth asteroids.   

I. Introduction 
mall body rendezvous missions have long been recognized as a class of missions for which  electric propulsion 
provides significant benefits relative to chemical propulsion.  It is no accident that three of the four deep-space 

missions using electric propulsion (Deep Space 11, SMART-12, Hayabusa3, and Dawn4) have been to small bodies. 
The use of electric propulsion on Dawn reduced the cost of the mission from flag ship class (>$1B) or a New 
Frontiers class (>$650M) to a Discovery class (~$400M). This savings primarily manifests itself in the ability of 
missions to use a smaller, less expensive launch vehicles. It is therefore, natural to ask if electric propulsion can 
provide similar benefits for human exploration of near-Earth asteroids (NEAs). NASA’s Human Exploration 
Framework Team (HEFT) asked exactly that question in the summer of 2010 and concluded that the use of a high-
power (of order 300-kW) solar electric propulsion (SEP) system could cut in half the number of heavy lift launch 
vehicles required for a human mission to a “hard-to-reach” NEA.5 This is consistent with the benefits identified in 
the “electric path” concept developed by Strange and Landau6-8.  The HEFT study also concluded that the use of 
high-power SEP makes the system architecture significantly less sensitive to mass growth in the other in-space 
elements; improves mission flexibility; provides more graceful propulsion system failure modes; makes substantial 
power available at the destination and during coast periods; and has the potential to be reusable.  

This paper looks at a candidate configuration for a 300-kW SEP vehicle and provides an estimate of its size and 
mass.  There are many possible ways to configure a high-power SEP vehicle (see Refs. 9-11 for example). Our 
approach was to configure a system that minimized the development cost.  While cost estimates for different 
technical alternatives are not included in this paper, the approach we took was to minimize the use of new 
technology where ever possible.  If there was a choice between two or more approaches to meeting a particular 
requirement we selected the approach which we believed was the easiest to implement as a proxy for cost, even if it 
resulted in a higher system mass. 
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loads on the SEP vehicle.  Finally, the th
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withstanding a 0.2-g loading while fully deployed.  These requirements are not entirely independent and an 
improvement in one parameter will impact the ability of the array to meet the others.  At a high level, solar arrays 
can be divided into two main parts: the blanket assembly that includes the solar cells, the substrate to which they’re 
mounted, and font & back cover glass; and the structure that deploys and supports the blanket assembly.  For 
advanced, light-weight solar array designs more than 70% of the total solar array mass may be in the blanket 
assembly.  Consequently, one of the big drivers for the blanket mass is the thickness of the solar cells. For our 
blanket design we assumed the use of the exquisitely thin IMM cells.  These cells are only 10-micron thick and 
promise an efficiency of 33%.  We assume they are mounted to a 5-micron thick kapton substrate. Font and back 
glass covers, each 125-micron thick, complete the blanket assembly except for the wiring.  The 125-micron thick 
cover glass is used to reduce the total radiation dose on the cells resulting from spiraling through the Earth’s 
radiation belts. The end result is that the blanket assembly is mostly glass. 

As the solar array size and power level increases it is necessary to increase the operating voltage of the array in 
order to keep the mass of the array harness from increasing too rapidly.  At 100 V a 175-kW solar array wing will 
produce a current of 1,750 A.  At 300 V this current is reduced to 583 A for the same power. We have estimated the 
effect of operating voltage on the solar array mass.  The results were then incorporated into an overall estimate of 
the SEP vehicle dry mass, so that the ripple effect of the array mass on other spacecraft subsystems (structure, 
propellant, tankage, etc.) could be accounted for.  The results are shown in Fig. 5.  These data indicate that 
increasing the solar array voltage from 100 V to 300 V reduces the SEP vehicle dry mass by about 1,250 kg and the 
wet mass by 2,200 kg. 

There are many concepts for large, deployable solar array structures, see for example Ref. 9-11. It is not clear 
which solar array structure will turn out to be the best choice for the SEP Freighter.  It is clear, however, that 
concentrating solar array concepts with high concentration ratios will significantly increase the difficulty of the array 
development because of their added requirement for tight angular pointing in at least one axis.  For the purpose of 
creating conceptual drawings of the SEP vehicle and to make mass estimates we have assumed the use of the Mega-
ROSA (Roll-Out Solar Array) concept under development by Deployable Space Systems12 as a proxy for the final 
solar array configuration. 

B. Hall Thrusters 
Hall thrusters using xenon propellant have been operated at up to 100 kW.13 For the 300-kW SEP vehicle we 

assumed an electric propulsion subsystem with eight Hall thrusters in which seven are operated simultaneously with  

Fig. 4. History of space solar power. 
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Fig. 5. Effect of solar array operating voltage on the SEP vehicle dry and wet masses. 

Fig. 6. Assumed throttle curves for the high-power Hall thrusters. 

PPU Input Power (kW) PPU Input Power (kW)

PPU Input Power (kW) PPU Input Power (kW)
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a PPU input power of 43 kW each.  The throttle curves used in the trajectory analyses were estimated by Rich Hofer 
at JPL and are given in Fig. 6. The seven Hall thrusters are assumed to be capable of processing the 37,000 kg of 
xenon.  This means that each thruster must be capable of a propellant throughput of about 5,300 kg with a low risk 
of wear-out failure. 

Mass scaling relationships for the Hall thrusters, PPUs, and xenon feed system components used those developed 
in Ref. 14. The thruster and conventional PPU mass scaling relations are reproduced below (for the input power, P, 
in kW). 

Thruster Mass (kg): mT = 1.8692 P + 0.7121 

Conventional PPU Mass (kg): mPPU = 1.7419 P + 4.654 

C. Thermal 
At an efficiency of 95% the waste heat generated by the PPUs is substantial, approximately 15,000 W.  This 

waste heat must be rejected by the thermal subsystem at the relatively low temperature of around 60C. A radiator 
surface area of about 28 m2 is required at 60C assuming the radiator does not see any warm bodies (e.g. Sun, Earth, 
Moon, etc), has an IR emissivity of about 0.86 (white paint), and a fin effectiveness of about 90%.  While 28 m2

sounds like a lot it can readily be accommodated by the SEP vehicle with body mounted radiators and imbedded 
loop-heat pipes.  Our SEP vehicle configuration uses two 14 m2 radiators mounted to the spacecraft structure in 
planes that are normal to the axis of rotation of the solar array.  This minimizes the sun exposure on the radiators.  
Each radiator is approximately 4.5-m long x 3.1-m wide.  Four PPUs are mounted to each radiator.  The vehicle 
configuration provides room to easily increase the radiator area if necessary.  This approach eliminates the need for 
deployable radiators. 

The 15,000 W of power dissipated by the PPUs does not account for any other electronic element dissipation that 
will have to be rejected.  We have allocated 5 kW for the operation of the non-EP loads on the SEP vehicle.  The 
thermal subsystem will have to provide radiator area to accommodate these thermal loads as well. 

At 300 kW input to the PPUs each one percentage point decrease in the PPU efficiency increases the amount of 
waste heat that must be radiated by the thermal subsystem by 3,000 W.  This places a premium on PPU efficiency.  
Direct-drive PPUs with the promise of efficiencies approaching 99% would make the thermal design of the SEP 
vehicle significantly easier. 

D. Direct-Drive 
PPU Development for electric propulsion systems has typically been expensive and time consuming.  The 

development of a PPU with the characteristics required for the 300-kW SEP Freighter – 43-kW input power, 250-V 
to 350-V input voltage, 95% efficiency, 60C baseplate, and a mass of ~80 kg – will certainly be challenging.  As 
indicated in Fig. 4, a high voltage solar array, with a nominal peak-power output voltage of around 300 V, provides 
a substantial mass reduction for the SEP vehicle relative to a 100-V array.  A high-power Hall thruster operating at a 
specific impulse of around 2,000 s requires an anode voltage of around 300 V, therefore, it is natural to investigate 
the potential advantages of direct-drive configurations in which the Hall thrusters are operated directly from the 
high-voltage solar array with a minimum of power processing electronics in between.  Direct-drive concepts have 
been around for a long time15 and were investigated at low powers (  1 kW) with Hall thrusters over the last two 
decades.16-20 Direct-Drive PPUs (DDUs) hold the promise of having significantly higher efficiency, resulting in a 
slightly smaller solar array and significantly less waste heat, and potentially being much easier to develop. 

Following the approach of Ref. 17, we made a preliminary estimate for the mass scaling of a DDU as: 

DDU Mass (kg): mDDU = 0.35 P + 1.9. 

At an input power of 43 kW the estimated DDU mass is 17 kg, compared to an estimated 80 kg for a conventional 
PPU.  For a system with 8 DDUs this is a mass savings of about 500 kg just in the PPU mass, not counting the 
corresponding structure mass savings, or the reduction in thermal subsystem mass, or the decrease in solar array 
size. 

The DDU consists mostly of the Heater/Keeper/Magnet (HKM) supplies, control circuitry, and filtering. The 
solar array is most efficient when providing a DC current at the maximum power point.  A Hall thruster, however, 
operates with a discharge current oscillation that could be as much as 50% to 100% of the DC level.  Consequently, 
filtering is required to make the oscillating Hall thruster load look like a DC load.   
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Table 2.  Estimated masses for the 300-kW SEP Freighter for both 
Conventional and direct-drive systems. 
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Appendix 
Table A1. List of the Highest Power Spacecraft Launched Each Year. 


