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Extreme terrain access will be essential for lunar exploration

A) Lava Tubes, Caves and Pits                      B) Permanently Shadowed Regions 
C) High Porosity Regolith                              D) Steep and Uneven Terrain
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New mobility solutions are needed for extreme terrain
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Lockheed-GM LRV
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Presentation Roadmap

● WORMS Platform Architecture

● Design, Development, Testing, and Engineering
● Path to Flight
● Roadmapping the Future of WORMS



WORMS Platform Architecture
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WORMS: a platform for field-reconfigurable robots

IKEA analogy: flat pack for 
shipment to a new location, easy 
to assemble by a non-specialist



10 | WORMS: Walking Oligomeric Robotic Mobility System spaceresources.mit.edu

Fundamental architecture element: Universal Interface Block

Every element in WORMS has at least one Universal Interface Block (UIB).
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Architecture elements: Worms

Each Worm is an identical, self-contained robot with actuators, sensors and a battery. 
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Architecture elements: simple accessories 
(e.g. shoes, a pallet)

Pallet with 7 UIB Connectors and 
power sharing capability

Rounded Shoe with UIB Connector
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Architecture elements: sophisticated Species Modules

The “mapper” Species Module, with a LiDAR 
unit on top and a UIB Connector at the bottom.

Countless Species Modules can specialize 
Worms for a multiple kinds of missions.
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Architecture elements: Multi-Agent Software

Base Station

/Heartbeat

/Command
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Architecture elements: Power Sharing
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WORMS-1 Proof of Concept Robot
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WORMS Design, Development, 
Testing and Engineering
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UIB: an interface for a robust mechanical connection
Five-Jaw design
● Androgynous 

requirement
Pin-locking Mechanism
● Zero-power robust 

connection requirement

Suspension-desk design
● Species module 

space requirement
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UIB Structure Verification

Abaqus CAE FEA Analysis
● Safety factor ~1.5

Experimental Structure Test
● Repeated loading test 
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Worm Articulation: Limb Length Selection

Limb lengths selected to tradeoff actuator continuous torque margin and walking speed.
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Worm Articulation: Detailed Design

Finite Element Analysis (FEA) 
of limb design

Testing the final 
actuator interface

Secondary actuator 
support bracket

Primary actuator 
support bracket

Limb beam model

Limb tube
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Pallet Mechanical Tests and Results
SolidWorks FEA of Pallet Structure WORMS-1 robot supporting its own weight with 4 unpowered legs

Large pallet 
deformation “down”
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Shoe Tests and Results 

Requirement Test Conducted Result
No material yielding during 
operation FEA and load test Pass

Shoe does not sink all the 
way in high-porosity surface

Shoe prototypes loaded in 
fake snow Pass
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Power distribution: power sharing & e-Stop for test support
Pallet Main Power Bus

Pallet Power 
Distribution Board

Contactors e-Stop

All WormsAll WormsAll WormsAll WormsAll WormsAll Worm Robots

Worm Main Power Bus

Battery BMS

3 Motors

Contactor

5V step-
down

On-board 
computer
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Pallet Main Power Bus Tests
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Battery Management System (BMS) Selection and Tests

Finalized BMS from Litech
Tests were done with the battery.

Wiring for BMS
Done for all BMSs (7 + spares)

Motor 
Power

Computer 
Power

Motor 
Power

Computer 
Power

Battery 
input
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Harness Schematic

• Harness functions
• Power and data to 3 motors
• Power and data between Worms
• e-Stop capability

• Optimized to safely enable full range of 
motion

• Extensively tested before integration

Harness Design and Testing
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Species Module Proof of Concept

Completed “Mapper” 
Species Module

Mapper Interior electronics Mapper LiDAR point cloud of 
MIT Space Resources lab

The Mapper Species Module shares point clouds over the ROS 2 
network enabling object detection and SLAM navigation.
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Multi-Agent Communication / Architecture
“WORMS” Local Area Network
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Communication Framework

/Heartbeat

/Robot_Info

/State

/Heartbeat

/Command

Worm Data Transmission 
to Base Station

Base Station Data 
Transmission 

to Worm
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Command Creation and Scheduling

31

Connected to Network: worms Command = [W1, W2, W3, W4, W5, W6]Command = [W1, W2, W3, W4, W5, W6]
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Controlling Worm behavior using command strings

Walking gait sequence with 6 feet 
on ground for propulsion phase

Walking gait variant with 4 feet 
on ground for propulsion phase

[4,4,4,4,4,4] commands all six Worms 
to execute propulsion phase move (“4”)

[3,7,7,3,7,7] commands Worms 1 and 4 
to reposition forward (“3”). Other worms 
are commanded to stand by (“7”).

[W1, W2, W3,  W4, W5,  W6] [W1,W2, W3, W4, W5,  W6]



WORMS Path to Flight,
Technology Roadmap and 

Sample Use Cases
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Proposed WORMS-1 tech demonstration mission in 2026
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Path to Flight

Environmental Change Required Design / Analysis Testing Required Affected Architectural Elements
Gravity N/A Weight equivalent 

walking
Worm, Power

Thermal Add thermal management 
system

Thermal cycling, 
thermal vacuum

All

Vacuum N/A Thermal vacuum Species Module, Power
Radiation Select rad hardened 

electronics
Radiation effects 
testing or by similarity

Power, Software

Dust Seal actuators, structure Sand and dust test 
(Swamp Works)

UIB, Worm, Accessories, Species 
Module

Launch Modal analysis Shock, vibe, acoustic All
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Technology roadmap: three generations of Worms

Gen 1 Gen 2 Gen 3
Single Worm Mass 10 kg 20 kg 60 kg

Worm Length ~1 m ~1 m ~1.5 m

Hexapod Payload 
Capacity

~400 kg ~900 kg ~1.9 tons

Universal Interface 
Block

Androgynous, simple spring-
loaded locking pins, custom 
disassembly tool

Gen 1 + can be disconnected in 
field by gloved, suited astronaut

Androgynous, larger form factor, 
autonomous connection and 
disconnection

Power Sharing 0.24 kWh battery per Worm, 
passive power sharing

0.72 kWh battery per Worm, 
active power controllers

2.5 kWh battery per Worm, 
upgraded active power controllers

Walking Gait Flat level ground, localization Unstructured, inclined terrain, 
SLAM

Gen 2 + adapting gait for sinking 
surface (porous regolith)

2024 2026Present



38 | WORMS: Walking Oligomeric Robotic Mobility System spaceresources.mit.edu

Heavy payloads over steep inclines with a train of Gen1 Worms
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Setting up a charging station inside PSR for other robots/rovers 
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Deploying a heavy solar array to a peak of eternal light
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Exploring lava tubes using Gen3 Carrier and Gen2 Walker



42 | WORMS: Walking Oligomeric Robotic Mobility System spaceresources.mit.edu

Laying and picking up climbing anchors to traverse steep inclines
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Other use cases for WORMS robotics

Relocating large surface assets such as habitats Constructing habitats, roads, landing pads etc.

Image credit: USC Center for Rapid Automated Fabrication Technologies (CRAFT)Image credit: NASA
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WORMS virtualizes the robotics hardware layer, turning all 
new lunar robotics applications into a 100% digital project.
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Thank you! Questions?





glordos@mit.edu


