

2022 Breakthrough, Innovative, Game-Changing (BIG) Idea Challenge

November 14-17, 2022 http://bigidea.nianet.org/

The BIG Idea Challenge is sponsored by NASA's Space Technology Mission Directorate (Game Changing Development Program) and Office of STEM Engagement (Space Grant), and managed by the National Institute of Aerospace.

New Robots Field-Reconfigurable Robots for Extreme Lunar Terrain

<u>Graduate Students:</u> George Lordos, Michael Brown, Yang Chen, Kir Latyshev, John Zhang, Paula do Vale Pereira³. <u>Undergraduates:</u> Alex Miller, Aditya Mehrotra, Prajwal Mahesh, Cormac O'Neill, Sharmi Shah, Jessica Rutledge, Cynthia Cao, Fatema Zaman, Steven Reyes, Tomas Cantu, Diego Rivero, Katherina Sapozhnikov, Anna Mokkapati, Chiara Rissola¹, Fiona Lin. <u>Advisors:</u> Prof. Jeffrey Hoffman, Prof. Olivier de Weck, Prof. David Trumper, Prof. Sangbae Kim. <u>Mentor:</u> Prof. Wendell Chun².

PASADENA, CA, NOVEMBER 14-17, 2022

SPACE RESOURCES WORKSHOP 1: Carnegie Mellon University 2: University of Denver 3: Florida Tech

Massachusetts Institute of Technology

Walking Oligomeric Robotic Mobility System

Field-reconfigurable robots to meet all types of lunar surface mobility needs

Introducing our presenters

Cesar Meza

Undergraduate

Class of 2025

AeroAstro

Fatema Zaman

Undergraduate

Class of 2025

EECS

Jacob Rodriguez

Undergraduate

Class of 2024

AeroAstro

Brooke Bensche

Undergraduate

Class of 2023

AeroAstro

George Lordos PhD Candidate Year 6 AeroAstro Michael Brown SM Candidate Year 2 AeroAstro

Team lead Deputy team lead

Introduction & overview

System arch., path to flight

Mechanical design & testing

Electrical design & testing

Software design & testing

Use cases and future impact

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Extreme terrain access will be essential for lunar exploration

A) Lava Tubes, Caves and Pits C) High Porosity Regolith

B) Permanently Shadowed RegionsD) Steep and Uneven Terrain

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

New mobility solutions are needed for extreme terrain

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Presentation Roadmap

- WORMS Platform Architecture
- Design, Development, Testing, and Engineering
- Path to Flight
- Roadmapping the Future of WORMS

WORMS Platform Architecture

WORMS: a platform for field-reconfigurable robots

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Fundamental architecture element: Universal Interface Block

Every element in WORMS has at least one Universal Interface Block (UIB).

10

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Architecture elements: Worms

Each Worm is an identical, self-contained robot with actuators, sensors and a battery.

WORMS: Walking Oligomeric Robotic Mobility System

Architecture elements: simple accessories (e.g. shoes, a pallet)

Rounded Shoe with UIB Connector

Pallet with 7 UIB Connectors and power sharing capability

WORMS: Wa

WORMS: Walking Oligomeric Robotic Mobility System

Architecture elements: sophisticated Species Modules

The "mapper" Species Module, with a LiDAR unit on top and a UIB Connector at the bottom.

Countless Species Modules can specialize Worms for a multiple kinds of missions.

SPACE RESOURCES WORKSHOP

Architecture elements: Multi-Agent Software

14

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

15 |

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

WORMS Design, Development, Testing and Engineering

UIB: an interface for a robust mechanical connection

UIB Structure Verification

Abaqus CAE FEA Analysis

• Safety factor ~1.5

Experimental Structure Test

• Repeated loading test

SPACE RESOURCES

WORMS: Walking Oligomeric Robotic Mobility System

Worm Articulation: Limb Length Selection

Limb lengths selected to tradeoff actuator continuous torque margin and walking speed.

SPACE RESOURCES

WORMS: Walking Oligomeric Robotic Mobility System

Worm Articulation: Detailed Design

Limb beam model

Finite Element Analysis (FEA) of limb design

Testing the final actuator interface

Pallet Mechanical Tests and Results

SolidWorks FEA of Pallet Structure

WORMS-1 robot supporting its own weight with 4 unpowered legs

Dellet Flowent	Max Stress on Element, N/m2		Element Material	Element Material Yield	Min Safety
Pallet clement	Type 1 Load	Type 3 Load	(aluminum alloy type)	Strength, N/m2	Coefficient
plate	6.00E+07	9.74E+07	7075-T6	5.03E+08	5.16
neck UIB	1.31E+07	8.44E+07	6061-T6	2.75E+08	3.26
leg UIB	3.25E+07	8.05E+07	6061-T6	2.75E+08	3.42
mid-support	1.64E+07	7.35E+07	6061-T6	2.75E+08	3.74

SPACE RESOURCES

Shoe Tests and Results

Requirement	Test Conducted	Result
No material yielding during operation	FEA and load test	Pass
Shoe does not sink all the way in high-porosity surface	Shoe prototypes loaded in fake snow	Pass

Power distribution: power sharing & e-Stop for test support

24

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

25 |

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Battery Management System (BMS) Selection and Tests

Finalized BMS from Litech Tests were done with the battery. Wiring for BMS Done for all BMSs (7 + spares)

SPACE RESOURCES

WORMS: Walking Oligomeric Robotic Mobility System

Harness Design and Testing

- Harness functions
 - Power and data to 3 motors
 - Power and data between Worms
 - e-Stop capability
- Optimized to safely enable full range of motion
- Extensively tested before integration

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Species Module Proof of Concept

Completed "Mapper" Species Module

Mapper Interior electronics

Mapper LiDAR point cloud of MIT Space Resources lab

The Mapper Species Module shares point clouds over the ROS 2 network enabling object detection and SLAM navigation.

Multi-Agent Communication / Architecture

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Communication Framework

30

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Command Creation and Scheduling

Command = $[W_1, W_2, W_3, W_4, W_5, W_6]$ # Name Notes 0 Set zero position zeroes the motors does not move. Ensures the motors are constantly at 0 1 Hold position at 0 *NO LONGER USED, (setup worm for propulsion phase starting from 0) 2 setup forward 3 forward phase Moves worm from back position to front position (shall be done 2 at a time) 4 propulsion phase Only done by 1, 2, 4, 5 5 lift leg Lifts leg from 45 to 90. Hip must be at 0 Lowers leg from 90 to 45. Hip must be at 0 6 lower leg 7 Standby Does nothing. Used to wait for next command and avoid repetition 8 enable motors 9 disable motors Lifts leg from 0 to 90 degrees. Hip must be at 0 10 45deg setup worm for propulsion phase starting from 90 degrees. Hip starts at 0 12 setup forward 2

31

Controlling Worm behavior using command strings

[4,4,4,4,4,4] commands all six Worms
to execute propulsion phase move ("4")

	[W ₁	,₩ ₂ ,	W ₃ ,	W ₄ ,	W ₅ ,	W ₆]	
	8	8	8	8	8	8	
	0	0	0	0	0	0	
	10	10	10	10	10	10	
	12	12	7	12	12	7	
	4	4	7	4	4	7	
	7	7	6	7	7	6	
1	3	7	7	3	7	7	
	7	3	7	7	3	7	
	7	7	5	7	7	5	
	4	4	7	4	4	7	
	7	7	6	7	7	6	
	9	9	9	9	9	9	

Walking gait sequence with 6 feet on ground for propulsion phase

 $[W_1, W_2, W_3, W_4, W_5, W_6]$

[3,7,7,3,7,7] commands Worms 1 and 4 to reposition forward ("3"). Other worms are commanded to stand by ("7").

Walking gait variant with 4 feet on ground for propulsion phase

WORMS Path to Flight, Technology Roadmap and Sample Use Cases

Proposed WORMS-1 tech demonstration mission in 2026

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Path to Flight

Environmental Change	Required Design / Analysis	Testing Required	Affected Architectural Elements
Gravity	N/A	Weight equivalent walking	Worm, Power
Thermal	Add thermal management system	Thermal cycling, thermal vacuum	All
Vacuum	N/A	Thermal vacuum	Species Module, Power
Radiation	Select rad hardened electronics	Radiation effects testing or by similarity	Power, Software
Dust	Seal actuators, structure	Sand and dust test (Swamp Works)	UIB, Worm, Accessories, Species Module
Launch	Modal analysis	Shock, vibe, acoustic	All

Technology roadmap: three generations of Worms

Gen 2 Gen 1 Gen 3 Single Worm Mass 10 kg 20 kg 60 kg ~1.5 m Worm Length ~1 m ~1 m Hexapod Payload ~400 kg ~900 kg ~1.9 tons Capacity Universal Interface Androaynous, simple spring-Gen 1 + can be disconnected in Androgynous, larger form factor, autonomous connection and Block loaded locking pins, custom field by gloved, suited astronaut disassembly tool disconnection Power Sharing 0.24 kWh battery per Worm, 2.5 kWh battery per Worm, 0.72 kWh battery per Worm, passive power sharing active power controllers upgraded active power controllers Walking Gait Flat level ground, localization Unstructured, inclined terrain, Gen 2 + adapting gait for sinking SLAM surface (porous regolith)

2024

2026

Heavy payloads over steep inclines with a train of Gen1 Worms

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Setting up a charging station inside PSR for other robots/rovers

39

SPACE RESOURCES WORKSHOP

Deploying a heavy solar array to a peak of eternal light

SPACE RESOURCES WORKSHOP

Exploring lava tubes using Gen3 Carrier and Gen2 Walker

41

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Laying and picking up climbing anchors to traverse steep inclines

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Other use cases for WORMS robotics

Relocating large surface assets such as habitats

Image credit: NASA

Constructing habitats, roads, landing pads etc.

Image credit: USC Center for Rapid Automated Fabrication Technologies (CRAFT)

43

WORMS: Walking Oligomeric Robotic Mobility System

WORMS virtualizes the robotics hardware layer, turning all new lunar robotics applications into a **100% digital project**.

44

SPACE RESOURCES WORKSHOP

WORMS: Walking Oligomeric Robotic Mobility System

Acknowledgements

N©RMS

The team thanks the National Institute of Aerospace for organizing NASA's 2022 BIG Idea Challenge and the WORMS project's funding sponsors: NASA's Space Technology Mission Directorate / Game Changing Development Program; NASA's National Space Grant College and Fellowship Program; the Massachusetts Institute of Technology; and the Massachusetts Space Grant. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 2141064 and by the Fannie and John Hertz Foundation.

The team thanks Aleks Siemenn, Hanfei Cui, Isabella Golemme, Jolie Bercow, Juan Salazar, Stephanie Howe, and Zeyad Al Awwad for their design contributions, and Stephanie Sjoblom, Koji Takahashi, Duncan Miller and John Beilstein for supporting our preparations for the presentation and technology demo.

We would also like to expresses our deep gratitude to our industry partners **Boston Dynamics**, **MassRobotics and Robots5**, for their mentorship and advice.

SPACE RESOURCES WORKSHOP