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Agenda

● Motivation
● Concept

● Mobility

● System Breakdown
● Materials
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Cargo-BEEP is an inflatable rover that deploys from a 

compact cylinder to provide greater operational freedom 

for Artemis.

Summary
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Motivation



6[1] NASA
Figure 1: Key sites for Artemis transportation needs
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Planned Artemis Infrastructure

Pressurized Rover (PR)
● Personnel Transport
● Long-Distance 

Missions

Lunar Terrain Vehicle (LTV)
● 10 year mission span
● Personnel Transport
● Designed for multiple 

missions
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Concept
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Concept of Operations

Figure 2: Fill and deployment procedure 

for Cargo-BEEP
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Figure 3: CAD image referencing compact size 

to fully inflated expansion.

Cargo-BEEP uses inflatables to deploy from a 

cylinder to a Segway-style cargo rover. 

Volumetric 

Expansion 

Ratio: 1:5
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Cargo-BEEP’s Operational Requirements

Cargo Capacity 300 kg

Range 10 km

Environmental Resistance Regolith abrasion, thermal variation

Operation Autonomous, semi-autonomous, or 

remote-controlled

Deployment Self-deployed via inflation

Additional Requirements Reusability & operational adaptability
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Cargo-BEEP’s enables unique mission profiles.

● Remote Control: Deploy experiments in high-risk locations 
such as craters. 

● Semi-Autonomous: Follow astronauts with heavy tools or 
equipment.

● Autonomous: Ferry materials between two crewed 
locations without astronaut intervention.
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Mobility
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Motion model exemplifies the inverse pendulum problem.

Figure 4: Physical model of the inverse 

pendulum. [3]

Figure 5: The described lean angle of a 

segway. [3]
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IMU
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Figure 6: Rover Control Diagram

Inverted Pendulum → Robust Control System

Communication 

Protocol
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Figure 7: Controls Prototype operating 

on rocky terrain
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Figure 8: Controls Prototype driving on 

uneven terrain
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System Breakdown
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Cargo-Beep is made of multiple modular 

subsystems.

Figure 9: Expanded view of Cargo-BEEP 

systems

Wheel hub

Cargo bed
Inflatable body

Telescoping rodsE-Bay

Fluids bay
Wheel

Wheel Deployable Chassis Robotic Controls
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Inflatable wheels expand from a solid wheel hub.

Figure 10: Image of uninflated wheel Figure 11: Fully inflated wheel
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Chassis provides strength, rigidity, and drives 

expansion.

Figure 12: Full chassis with inflatable 

body

Figure 14: Chassis frame with the metal 

rods and brackets

Figure 13: Cargo bed CAD design
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Hermetic layer chosen to keep gas from 

escaping the inflatables.

Figure 15: Hermetic Layer of the wheel. Figure 16: Hermetic layer of the body.
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We used two types of seals to seal our hermetic layer.

Figure 17: Fabric to Fabric heat sealed 

edge.
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We used two types of seals to seal our hermetic layer.

Figure 18:  Wheel Gasket Diagram.
Figure 19: Fabric to Metal seal with 

PTFE Gasket.



26

Woven kevlar straps support pressure load.

Figure 20: 45 degree torus weave pattern 

woven around commercial off the shelf 

(COTS) scaffold.

Figure 21: 90 degree 

helical pattern.

Figure 22: Wheel restraint layer. 
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Abrasion from lunar regolith was assumed to be a 

high failure point.

Figure 24: Wheel with full abrasion 

layer.

Figure 23: Close-up of Abrasion layer on the wheel.
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Cargo-BEEP inflates and deploys for use.



29Figure 25: Inflation of the chassis.



30Figure 26: Inflation of the Wheel.
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Materials
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System inflatables have many desired 

characteristics: 

1. Be gas non-permeable
2. Maintain pressure
3. Control inflation and deflation
4. Prevent temperature fluctuations
5. Resist abrasion from lunar regolith
6. Resist degradation from UV radiation
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System inflatables have many desired 

characteristics: 

1. Be gas non-permeable
2. Maintain pressure
3. Control inflation and deflation
4. Prevent temperature fluctuations
5. Resist abrasion from lunar regolith

6.  Resist degradation from UV radiation

Multi-layer solution required.
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● Consults:

○ Virtual meetings with 

industry professionals.

● Pending:

○ Quotation requests and 

were not answered.

● Denied:

○ Companies were not 

willing to assist.

Figure 27: Resulting responses from industry.
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Simulations allowed us to understand folding 

patterns. Folding patterns allowed predictions 

into where materials would need to vary.

Figure 28: Generated toroid shape. Figure 29: Generated fold locations from 

simulations.
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Physical prototyping proved that designing any 

inflation controls was out of the scope of our project.

Figure 30: Motion dynamics of rigid and flexible material prototypes.
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Preliminary inflatable body tests proved some 

feasibility towards using PET or other 

thermoplastics. 

Figure 31: Initial PET inflatable prototype.
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We encountered two large failure points when 

sealing the PET fabric.

Figure 32: Too high of temperatures would cause the 

seals to break.

Figure 33: Metal brackets on the heat sealer created 

micro holes during sealing.
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We were able to overcome this by makeshift patching 

the hermetic layer. It contained 20 psi when inflated.

Figure 34: Patching on the 

hermetic layer

Figure 35: Inflated wheel with hermetic and 

restraint layers.
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Using kevlar was a cheaper alternative that 

provided similar results.

Vectran:
Width: 1” Strips 

Weave: Double Plain
Cost: $15.75/yard

Kevlar:
Width: 1” Strips

Weave: Plain
Cost: $7.85 / yard
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Clevis roller inspired clamp design for weaving 

around 3D structures.

Figure 37: Clevis roller inspired strap connections for 

restraint layer.

Figure 36: NASA design interface for strap attachment. 

[4] 
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Thermal analysis confirms we do not need a 

thermal insulation for our inflatables.

● PET melts at temperatures between 235℃ and 260℃
● Electronics would require temperature mitigation but our 

inflatables would not.

Table 1: Results from thermal feasibility analysis of wheels and body subsystems.
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Kevlar and Vectran are extremely susceptible to abrasion. 

Figure 38: Vectran susceptibility to lunar regolith degradation. [5] Figure 39: Kevlar susceptibility to lunar regolith degradation. [5]
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Lunar regolith is incredibly abrasive. 

● Regolith comprised of large range of particles sizes.
● No weathering on the Moon, highly jagged edges.
● Similar to driving on both glass and sandpaper.

Figure 41: Microscope images of lunar regolith. [7]

Figure 40: Images of Lunar regolith. [6]
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Completed puncture testing showed that ballistic nylon 

was the strongest candidate for puncture resistance 

after vectran.

Figure 43: Microscope images of lunar regolith. [7]Figure 42: Puncture testing results.
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Glossiness or reflectivity of the fabric provides  

additional UV resistance.

Figure 44: Ballistic Nylon is coated with Polyurethane, demonstrating the material’s 

glossy aspect.
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Questions?
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Gas Selection: Argon or N2

Argon

● More inert than N2
● Superior insulator
● Less reactive to temperature

● Less reactive to radiation

Nitrogen

● Inert and commercially available
● Safer to handle than Argon
● Inexpensive

● Readily available
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More traditional origami techniques improved 

flexibility, but still restricted initial package size.

https://www.sciencedirect.com/science/article/pii/S
0020746220301955



Puncture testing was designed and completed 

in accordance to ASTM - F1306-21 

54
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We used two different stitch types to connect 

the straps together.

Strips stitched at crosses to prevent torsional slip.We used a tapered diamond stitch to attach new 

straps to the ends of other straps.
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Structural Analysis
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